Lecture 08
 13.1/13.2/13.3: Smooth curves, integrals, arc length

Jeremiah Southwick

February 4, 2019

Things to note

Exam 1 is on Monday, February 11 (1 week).
Quiz 04 will be on Wednesday, February 6 (next class).
Friday, February 8 will be a review day with no quiz.
MTW office hours canceled.

Quiz 03 Key ideas

1. Intersection (a geometric idea) means substitution algebraically.

$$
2(1+t)-(-2+5 t)+3(3-2 t)=40
$$

2. A plane being perpendicular to a line means the plane's normal vector is parallel to the direction vector of the line.

$$
\overrightarrow{\mathbf{n}}=\langle-2,3,-1\rangle
$$

Last class

Definition

A vector-valued function is a function

$$
\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle
$$

where f, g, and h are real-valued functions.

Definition

Let $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle . \overrightarrow{\mathbf{r}}$ is differentiable at $t=t_{0}$ if f, g and h are differentiable at t_{0}. In this case,

$$
\begin{gathered}
\vec{r}^{\prime}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t}=\left\langle\frac{d f}{d t}, \frac{d g}{d t}, \frac{d h}{d t}\right\rangle . \\
\overrightarrow{\mathbf{v}}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t} \text { and } \overrightarrow{\mathbf{a}}(t)=\frac{d \overrightarrow{\mathbf{v}}}{d t}=\frac{d^{2} \overrightarrow{\mathbf{r}}}{d t^{2}} .
\end{gathered}
$$

Smooth vector functions

If $\frac{d \vec{r}}{d t}$ is never 0 , then the space curve has a well-defined direction at all points of the curve. Vector-valued functions with this property are smooth.

Smooth vector functions

If $\frac{d \vec{r}}{d t}$ is never 0 , then the space curve has a well-defined direction at all points of the curve. Vector-valued functions with this property are smooth.
Definition
A vector-valued function $\overrightarrow{\mathbf{r}}(t)$ is smooth on the domain D if

1. $\frac{d \vec{r}}{d t}$ is continuous on D, and
2. $\frac{d \vec{r}}{d t}$ is never $\overrightarrow{\mathbf{0}}$ on D.

We simply say $\overrightarrow{\mathbf{r}}(t)$ is smooth if $\overrightarrow{\mathbf{r}}(t)$ is smooth on \mathbb{R}.

Smooth vector functions

If $\frac{d \vec{r}}{d t}$ is never 0 , then the space curve has a well-defined direction at all points of the curve. Vector-valued functions with this property are smooth.
Definition
A vector-valued function $\overrightarrow{\mathbf{r}}(t)$ is smooth on the domain D if

1. $\frac{d \vec{r}}{d t}$ is continuous on D, and
2. $\frac{d \vec{r}}{d t}$ is never $\overrightarrow{\mathbf{0}}$ on D.

We simply say $\overrightarrow{\mathbf{r}}(t)$ is smooth if $\overrightarrow{\mathbf{r}}(t)$ is smooth on \mathbb{R}.
Example
Show that the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$ is smooth.

Smooth vector functions

If $\frac{d \vec{r}}{d t}$ is never 0 , then the space curve has a well-defined direction at all points of the curve. Vector-valued functions with this property are smooth.
Definition
A vector-valued function $\overrightarrow{\mathbf{r}}(t)$ is smooth on the domain D if

1. $\frac{d \vec{r}}{d t}$ is continuous on D, and
2. $\frac{d \vec{r}}{d t}$ is never $\overrightarrow{\mathbf{0}}$ on D.

We simply say $\overrightarrow{\mathbf{r}}(t)$ is smooth if $\overrightarrow{\mathbf{r}}(t)$ is smooth on \mathbb{R}.

Example

Show that the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$ is smooth.
We have $\frac{d \vec{r}}{d t}=\langle-\sin (t), \cos (t), 1\rangle$. Since the z-direction of $\frac{d \vec{r}}{d t}$ is always $1, \frac{d \vec{r}}{d t}$ is never the zero vector for any value of t. Thus $\overrightarrow{\mathbf{r}}(t)$ is smooth.

Vector Functions of Constant Length

If a vector-valued function always has the same length, then it has the property that $\overrightarrow{\mathbf{r}} \cdot \frac{d \vec{r}}{d t}=0$. We can prove this algebraically.

Vector Functions of Constant Length

If a vector-valued function always has the same length, then it has the property that $\overrightarrow{\mathbf{r}} \cdot \frac{d \vec{r}}{d t}=0$. We can prove this algebraically. If $\overrightarrow{\mathbf{r}}(t)$ has constant length, then we have $\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{r}}(t)=c^{2}$ for some length c. This means

$$
\frac{d}{d t}[\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{r}}(t)]=0 \Rightarrow \frac{d \overrightarrow{\mathbf{r}}}{d t} \cdot \overrightarrow{\mathbf{r}}(t)+\overrightarrow{\mathbf{r}}(t) \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}=0 \Rightarrow 2 \overrightarrow{\mathbf{r}}(t) \frac{d \overrightarrow{\mathbf{r}}}{d t}=0
$$

which gives the desired result.

13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we differentiated them in the previous section.

13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we differentiated them in the previous section.

Definition
Let $\overrightarrow{\mathbf{r}}(t)$ be a vector function with $\overrightarrow{\mathbf{R}}(t)$ an anti-derivative for $\overrightarrow{\mathbf{r}}(t)$. Then

$$
\int \overrightarrow{\mathbf{r}}(t) d t=\overrightarrow{\mathbf{R}}(t)+\overrightarrow{\mathbf{C}}
$$

for some constant vector $\overrightarrow{\mathbf{C}}$.

13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we differentiated them in the previous section.

Definition
Let $\overrightarrow{\mathbf{r}}(t)$ be a vector function with $\overrightarrow{\mathbf{R}}(t)$ an anti-derivative for $\overrightarrow{\mathbf{r}}(t)$. Then

$$
\int \overrightarrow{\mathbf{r}}(t) d t=\overrightarrow{\mathbf{R}}(t)+\overrightarrow{\mathbf{C}}
$$

for some constant vector $\overrightarrow{\mathbf{C}}$.
Example
Let $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$. Find $\int \overrightarrow{\mathbf{r}}(t) d t$.

13.2 Integrals of vector-valued functions

We can integrate vector functions componentwise just as we differentiated them in the previous section.

Definition

Let $\overrightarrow{\mathbf{r}}(t)$ be a vector function with $\overrightarrow{\mathbf{R}}(t)$ an anti-derivative for $\overrightarrow{\mathbf{r}}(t)$. Then

$$
\int \overrightarrow{\mathbf{r}}(t) d t=\overrightarrow{\mathbf{R}}(t)+\overrightarrow{\mathbf{C}}
$$

for some constant vector $\overrightarrow{\mathbf{C}}$.
Example
Let $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$. Find $\int \overrightarrow{\mathbf{r}}(t) d t$.
The integral is $\left\langle\sin (t),-\cos (t), \frac{t^{2}}{2}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ where the c_{i} are constant real numbers.

Definite Integrals

Definition

If the components of $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$ are integrable over the interval $[a, b]$, then so is $\overrightarrow{\mathbf{r}}$, and

$$
\int_{a}^{b} \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Definite Integrals

Definition

If the components of $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$ are integrable over the interval $[a, b]$, then so is $\overrightarrow{\mathbf{r}}$, and

$$
\int_{a}^{b} \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Notice that a definite integral gives us a vector in 3D, not a function.

Definite Integrals

Definition

If the components of $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$ are integrable over the interval $[a, b]$, then so is $\overrightarrow{\mathbf{r}}$, and

$$
\int_{a}^{b} \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Notice that a definite integral gives us a vector in 3D, not a function.

Example
Find $\int_{0}^{\pi}(\cos (t) \overrightarrow{\mathbf{i}}+\overrightarrow{\mathbf{j}}-2 t \overrightarrow{\mathbf{k}}) d t$.

Definite Integrals

Definition

If the components of $\overrightarrow{\mathbf{r}}(t)=\langle f(t), g(t), h(t)\rangle$ are integrable over the interval $[a, b]$, then so is $\overrightarrow{\mathbf{r}}$, and

$$
\int_{a}^{b} \overrightarrow{\mathbf{r}}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Notice that a definite integral gives us a vector in 3D, not a function.

Example
Find $\int_{0}^{\pi}(\cos (t) \overrightarrow{\mathbf{i}}+\overrightarrow{\mathbf{j}}-2 t \overrightarrow{\mathbf{k}}) d t$.
$=[\sin (t)]_{0}^{\pi} \overrightarrow{\mathbf{i}}+[t]_{0}^{\pi} \overrightarrow{\mathbf{j}}+\left[t^{2}\right]_{0}^{\pi} \overrightarrow{\mathbf{k}}=(0-0) \overrightarrow{\mathbf{i}}+(\pi-0) \overrightarrow{\mathbf{k}}+\left[\pi^{2}-0\right] \overrightarrow{\mathbf{k}}=$ $\left\langle 0, \pi, \pi^{2}\right\rangle$.

13.3 Arc length in space

13.3 Arc length in space

Recall that the arc length of a parametrized curve $x=f(t)$, $y=g(t)$ from $t=a$ to $t=b$ is given by the formula

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}}
$$

13.3 Arc length in space

Recall that the arc length of a parametrized curve $x=f(t)$, $y=g(t)$ from $t=a$ to $t=b$ is given by the formula

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}}
$$

Definition

Let $\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}$ be smooth and let $a \leq t \leq b$. Then the length of $\overrightarrow{\mathbf{r}}$ from $t=a$ to $t=b$ is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}+\left(\frac{d h}{d t}\right)^{2}} d t
$$

Example

Find the length of the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$ from $t=0$ to $t=2 \pi$.

Example

Find the length of the helix $\overrightarrow{\mathbf{r}}(t)=\langle\cos (t), \sin (t), t\rangle$ from $t=0$ to $t=2 \pi$.

The length is

$$
\begin{gathered}
L=\int_{0}^{2 \pi} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+1^{2}} d t=\int_{0}^{2 \pi} \sqrt{1+1} d t \\
=\sqrt{2} t]_{t=0}^{t=2 \pi}=2 \sqrt{2} \pi
\end{gathered}
$$

